Detecting Perceptual Color Changes from Sequential Images for Scene Surveillance

نویسندگان

  • Mika Rautiainen
  • Timo Ojala
  • Hannu Kauniskangas
چکیده

This paper proposes a methodology for detecting the appearance of matte-surfaced objects on a scene using color information and spatial thresholding. First, a difference image is obtained via a pixel-wise comparison of the color content of a 'clean' reference image and a sample image. Then, spatial thresholding of the difference image is performed to extract any objects of interest, followed by morphological post-processing to remove pixel noise. We study the applicability of two alternate color spaces (HSV, CIE Lab) for computing the difference image, and similarly, two alternate spatial thresholding methods based on Euler numbers and stochastic Poisson model are evaluated. We demonstrate the performance of the proposed approach in scene surveillance, where the objective is to monitor a shipping dock for the appearance of needless objects such as cardboard boxes. In order to analyze the robustness of the approach, the experiment includes three different types of scenes categorized as 'easy', 'moderate', and 'difficult', based on scene properties such as the heterogeneity of the background and the existence of illumination changes and shadows. The experimental results show that relatively good recognition accuracy is achieved on 'easy' and 'moderate' scenes, whereas 'difficult' scenes remain a challenge for future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

Pedestrians Tracking in a Camera Network

With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...

متن کامل

Pedestrians Tracking in a Camera Network

With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...

متن کامل

A Statistical Method for Sequential Images – Based Process Monitoring

Today, with the growth of technology, monitoring processes by the use of video and satellite sensors have been more expanded, due to their rich and valuable information. Recently, some researchers have used sequential images for image defect detection because a single image is not sufficient for process monitoring. In this paper, by adding the time dimension to the image-based process monitorin...

متن کامل

Fast Scene Change Detection in Surveillance Systems Using ANOVA on Color Histogram

Abstract Automated surveillance systems have drawn much attention recently. For a surveillance system to operate and obtain credible sensing of a scenario, visual analysis is the most critical aspect. With an increasing expectation of acceptable outcomes from surveillance systems, light weight but fast visual analyses for producing authentic results are being greatly emphasized. In this paper, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000